Latest Posts
Misc. Gadgets

Are big smartphones the future of e-books?

Stephen King once called books “a uniquely portable magic.” Thanks to mobile technology those words resonate more than ever. Question is, has the e-book revolution...
Latest Technology

MediaTek MT6592 octa-core SoC takes on Antutu, posts an impressive score

Antutu benchmark scores for the freshly announced MediaTek MT6592 octa-core chipset have emerged, showcasing its top-shelf performance. The MT6592 SoC with 1.7GHz CPU cores posted a result of 29415, while its sibling with 2GHz cores, came out with a truly impressive 32606.

The abovementioned scores put the 2GHz CPU version of the chipset at the very top of the Antutu performance chart, besting every high-end Android device we’ve tested this far. You can see how exactly the MediaTek MT6592 fares in the chart below.

AnTuTu 4

Higher is better

  • MediaTek MT6592, 2GHz CPU
  • Samsung Galaxy Note 3
  • Sony Xperia Z1
  • LG G2
  • Sony Xperia Z Ultra
  • Samsung Galaxy S4
  • HTC One
  • HTC One Max
  • LG Nexus 5
  • Meizu MX3
  • LG Nexus 4

While the chipset’s score in undeniably impressive, it must be noted that the screen resolution of the device used for the benchmark testing hasn’t been disclosed. A device with a 720p display for example, would post a significantly higher score than one with a FullHD unit.

We will pass final judgment when we get to put a final production device with the new chipset through its paces. The initial impression though, shows that MediaTek might be dropping its budget credentials for more high-end ones.

Source | Via

Latest Technology

LG’s Odin SoC is rumored to have a quad-core and octa-core version

A report in Korean media made the rounds, shedding light on the development of LG’s previously rumored, in-house developed chipset dubbed Odin. The SoC will reportedly come in two different versions – one with quad-core CPU, and another with an octa-core setup.

The quad-core version of the chipset will allegedly pack an ARM Mali-T604 GPU. The octa-core one on the other hand, is said to sport ARM’s latest Mali-T760 GPU.

The quad-core configuration of the Odin chipset will reportedly find home in LG’s lineup of smart TV’s, while the octa-core setup will be featured in mobile devices. The Taiwanese chip maker TSMC will be in charge of the chips’ production.

There is no timeline on the chipset debut. The next generation of top-end LG mobile devices however, seems to be a safe bet.

Source (in Korean) | Via


Does obesity reshape our sense of taste?

Nov. 21, 2013 — Obesity may alter the way we taste at the most fundamental level: by changing how our tongues react to different foods.

In a Nov. 13 study in the journal PLOS ONE, University at Buffalo biologists report that being severely overweight impaired the ability of mice to detect sweets.

Compared with slimmer counterparts, the plump mice had fewer taste cells that responded to sweet stimuli. What's more, the cells that did respond to sweetness reacted relatively weakly.

The findings peel back a new layer of the mystery of how obesity alters our relationship to food.

"Studies have shown that obesity can lead to alterations in the brain, as well as the nerves that control the peripheral taste system, but no one had ever looked at the cells on the tongue that make contact with food," said lead scientist Kathryn Medler, PhD, UB associate professor of biological sciences.

"What we see is that even at this level -- at the first step in the taste pathway -- the taste receptor cells themselves are affected by obesity," Medler said. "The obese mice have fewer taste cells that respond to sweet stimuli, and they don't respond as well."

The research matters because taste plays an important role in regulating appetite: what we eat, and how much we consume.

How an inability to detect sweetness might encourage weight gain is unclear, but past research has shown that obese people yearn for sweet and savory foods though they may not taste these flavors as well as thinner people.

Medler said it's possible that trouble detecting sweetness may lead obese mice to eat more than their leaner counterparts to get the same payoff.

Learning more about the connection between taste, appetite and obesity is important, she said, because it could lead to new methods for encouraging healthy eating.

"If we understand how these taste cells are affected and how we can get these cells back to normal, it could lead to new treatments," Medler said. "These cells are out on your tongue and are more accessible than cells in other parts of your body, like your brain."

The new PLOS ONE study compared 25 normal mice to 25 of their littermates who were fed a high-fat diet and became obese.

To measure the animals' response to different tastes, the research team looked at a process called calcium signaling. When cells "recognize" a certain taste, there is a temporary increase in the calcium levels inside the cells, and the scientists measured this change.

The results: Taste cells from the obese mice responded more weakly not only to sweetness but, surprisingly, to bitterness as well. Taste cells from both groups of animals reacted similarly to umami, a flavor associated with savory and meaty foods.

Medler's co-authors on the study were former UB graduate student Amanda Maliphol and former UB undergraduate Deborah Garth.


‘The era of neutrino astronomy has begun’

Astrophysicists using a telescope embedded in Antarctic ice have succeeded in a quest to detect and record the mysterious phenomena known as cosmic neutrinos -- nearly massless particles that stream to Earth at the speed of light from outside our solar...
Latest Technology, Sony

PlayStation Blogcast 099: Best of a Generation

Subscribe via iTunes or RSS, or download here Today's show is momentous! With PS4 in the wild in North America, we take a look back at the best of a generation. Two PlayStation legends, Worldwide Studios President Shuhei Yoshida and Worldwide Studios America Senior Vice President Scott Rhohde, name their 10 favorite games of the PS3 generation!

How flu evolves to escape immunity

Nov. 21, 2013 — Scientists have identified a potential way to improve future flu vaccines after discovering that seasonal flu typically escapes immunity from vaccines with as little as a single amino acid substitution. Additionally, they found these single amino acid changes occur at only seven places on its surface -- not the 130 places previously believed. The research was published today, 21 November, in the journal Science.

"This work is a major step forward in our understanding of the evolution of flu viruses, and could possibly enable us to predict that evolution. If we can do that, then we can make flu vaccines that would be even more effective than the current vaccine," said Professor Derek Smith from the University of Cambridge, one of the two leaders of the research, together with Professor Ron Fouchier from Erasmus Medical Center in The Netherlands.

The flu vaccine works by exposing the body to parts of inactivated flu from the three major different types of flu that infect humans, prompting the immune system to develop antibodies against these viruses. When exposed to the actual flu, these antibodies can eliminate the flu virus.

However, every two or three years the outer coat of seasonal flu (made up of amino acids) evolves, preventing antibodies that would fight the older strains of flu from recognising the new strain. As a result, the new strain of virus escapes the immunity that has been acquired as a result of earlier infections or vaccinations. Because the flu virus is constantly evolving in this way, the World Health Organisation meets twice a year to determine whether the strains of flu included in the vaccine should be changed.

For this study, the researchers created viruses which had a variety of amino acid substitutions as well as different combinations of amino acid substitutions. They then tested these viruses to see which substitutions and combinations of substitutions caused new strains to develop.

They found that seasonal flu escapes immunity and develops into new strains typically by just a single amino acid substitution. Until now, it was widely believed that in order for seasonal flu to escape the immunity individuals acquire from previous infections or vaccinations, it would take at least four amino acid substitutions.

They also found that such single amino acid changes occurred at only seven places on its surface -- all located near the receptor binding site (the area where the flu virus binds to and infects host cells). The location is significant because the virus would not change so close to the site unless it had to, as that area is important for the virus to conserve.

"The virus needs to conserve this, its binding site, as it uses this site to recognize the cells that it infects in our throats," said Bjorn Koel, from Erasmus Medical Center in The Netherlands and lead author of the paper.

Seasonal flu is responsible for half a million deaths and many more hospitalizations and severe illnesses worldwide every year.


Black hole birth captured: Biggest, brightest to happen in at least 20 years

Nov. 21, 2013 — Intelligent telescopes designed by Los Alamos National Laboratory got a front row seat recently for an unusual birth.

"Los Alamos' RAPTOR telescopes in New Mexico and Hawaii received a very bright cosmic birth announcement for a black hole on April 27," said astrophysicist Tom Vestrand, lead author of a paper appearing today in the journal Science that highlights the unusual event.

"This was the burst of the century," said Los Alamos co-author James Wren. "It's the biggest, brightest one to happen in at least 20 years, and maybe even longer than that."

The RAPTOR (RAPid Telescopes for Optical Response) system is a network of small robotic observatories that scan the skies for optical anomalies such as flashes emanating from a star in its death throes as it collapses and becomes a black hole -- an object so dense that not even light can escape its gravity field. This birth announcement arrived from the constellation Leo in the form of an exceptionally bright flash of visible light that accompanied a powerful burst of cosmic gamma-ray emissions.

What made such an extremely rare event even more spectacular for scientists, however, is that, in addition to the RAPTOR sighting, it was witnessed by an armada of instruments -- including gamma-ray and X-ray detectors aboard NASA's Fermi, NuSTAR and Swift satellites. While the NASA instruments recorded some of the highest-energy gamma-ray bursts ever measured from such an event, RAPTOR noticed that the massive and violent transformation of a star into a black hole yielded a lingering "afterglow" that faded in lock-step with the highest energy gamma-rays.

"This afterglow is interesting to see," said paper co-author Przemek Wozniak of Los Alamos's Intelligence and Space Research Division. "We normally see a flash associated with the beginning of an event, analogous to the bright flash that you would see coinciding with the explosion of a firecracker. This afterglow may be somewhat analogous to the embers that you might be able to see lingering after your firecracker has exploded. It is the link between the optical phenomenon and the gamma-rays that we haven't seen before, and that's what makes this display extremely exciting."

All things considered, the event was among the brightest and most energetic of its type ever witnessed.

"This was a Rosetta-Stone event that illuminates so many things -- literally," Vestrand said. "We were very fortunate to have all of the NASA and ground-based instruments seeing it at the same time. We had all the assets in place to collect a very detailed data set. These are data that astrophysicists will be looking at for a long time to come because we have a detailed record of the event as it unfolded."

Already the event, labeled GRB 130427A by astrophysicists, is testing some long-held assumptions about the nature of the universe. For example, scientists recorded energy levels for gamma rays that are higher than what some researchers thought theoretically possible. This revelation may require physicists to modify existing theories about radiation. No doubt, the data set could yield more surprises in the future, Vestrand said.


Improve learning by taming instructional complexity

Nov. 21, 2013 — From using concrete or abstract materials to giving immediate or delayed feedback, there are rampant debates over the best teaching strategies to use. But, in reality, improving education is not as simple as choosing one technique over another.

Carnegie Mellon University and Temple University researchers scoured the educational research landscape and found that because improved learning depends on many different factors, there are actually more than 205 trillion instructional options available.

In the Nov. 22 issue of Science, the researchers break down exactly how complicated improving education really is when considering the combination of different dimensions -- spacing of practice, studying examples or practicing procedures, to name a few -- with variations in ideal dosage and in student needs as they learn. The researchers offer a fresh perspective on educational research by focusing on conclusive approaches that truly impact classroom learning.

The findings were published only a week after CMU launched the Simon Initiative to accelerate the use of learning science and technology to improve student learning. Named to honor the work of the late Nobel Laureate and CMU Professor Herbert Simon, the initiative will harness CMU's decades of learning data and research to improve educational outcomes for students everywhere.

"There are not just two ways to teach, as our education debates often seem to indicate," said lead author Ken Koedinger, professor of human-computer interaction at Carnegie Mellon, director of the Pittsburgh Science of Learning Center (PSLC) and co-coordinator of the Simon Initiative. "There are trillions of possible ways to teach. Part of the instructional complexity challenge is that education is not 'one size fits all,' and optimal forms of instruction depend on details, such as how much a learner already knows and whether a fact, concept, or thinking skill is being targeted."

For the paper, Koedinger, Temple's Julie Booth and CMU's David Klahr investigated existing education research to show that the space is too vast, with too many possibilities for simple studies to determine what techniques will work for which students at different learning points.

"As learning researchers, we get frustrated when our work doesn't seem to make an impact on the education system," said Booth, assistant professor of educational psychology at Temple who received her Ph.D. in psychology from Carnegie Mellon. "But much of the work on these learning principles has been conducted in laboratory settings. We need to shift our focus to determine when and for whom these techniques work in real-world classrooms."

To tame instructional complexity and maximize the potential of improving research behind educational practice and student learning, the researchers offer five recommendations:

1. Because trying all educational options -- more than 205 trillion -- to find out what works best is impossible, research should focus on how different forms of instruction meet different functional needs, such as which methods are best for learning to remember facts, which are best for learning to induce general skills, and which are best for learning to make sense of concepts and principles.

2. More experiments are needed to determine how different instructional techniques enhance different learning functions. For example, the optimal way to memorize facts may be a poor way to learn to induce general skills.

3. Take advantage of educational technology to further understand how people learn and which instructional dimensions can or cannot be treated independently by conducting massive online studies, which use thousands of students and test hundreds of variations of instruction at the same time.

4. To understand impact, build a national data infrastructure in which data collected at a moment-by-moment basis (i.e., cognitive tutors tracking daily how a student learns algebra over a school year) can be linked with longer-term results, such as state exams and performances in a next class.

5. Create more permanent school and research partnerships to facilitate interaction between education, administration and researchers. For example, the PSLC, funded by the National Science Foundation (NSF), gives teachers immediate feedback and allows researchers to explore only relevant theories.

"These recommendations are just one of the many steps needed to nail down what's necessary to really improve education and to expand our knowledge of how students learn and how to best teach them," said Klahr, the Walter Van Dyke Bingham Professor of Psychology at CMU who directs PIER, the university-wide graduate training program in education research. "They're also in line with how Carnegie Mellon -- an educational research powerhouse -- approaches education by studying the intersection of instruction, cognitive psychology, computer science, statistics, philosophy and policy."


Two Y genes can replace the entire Y chromosome for assisted reproduction in mice

Nov. 21, 2013 — The Y chromosome is a symbol of maleness, present only in males and encoding genes important for male reproduction. But live mouse offspring can be generated with assisted reproduction using germ cells from males with the Y chromosome contribution limited to only two genes: the testis determinant factor Sry and the spermatogonial proliferation factor Eif2s3y.

"Does this mean that the Y chromosome (or most of it) is no longer needed? Yes, given our current technological advances in assisted reproductive technologies," said Monika A. Ward, Associate Professor at the Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawai'i. At the same time, however, she also emphasized the importance of the Y chromosome for normal, unassisted fertilization and other aspects of male reproduction.

In a new manuscript scheduled for online publication in the journal Science on November 21, 2013, Ward and her UH colleagues describe their effort to identify the minimum Y chromosome contribution required to generate a healthy first generation mouse, capable of reproducing a second generation on its own without further technological intervention.

For this study, Ward and her colleagues used transgenic male mice with only two Y genes, Sry and Eif2s3y. The mice were considered infertile because they had meiotic and postmeiotic arrests -- that is, the germ cells that should have normally developed into sperm did not fully mature in these mice -- but researchers were able to find few usable cells. Yasuhiro Yamauchi, a post-doctoral scholar on Ward's team, harvested these immature spermatids and used a technique called round spermatid injection (ROSI) to successfully fertilize oocytes in the laboratory. When the developed embryos were transferred to female mouse surrogate mothers, live offspring were obtained.

Because the overall efficiency of ROSI with two Y genes was lower than with regular, fertile mice, the researchers then looked to see whether the addition of other Y genes could improve it. They increased the live offspring rate by about two-fold when Sry was replaced with the sex reversal factor Sxrb, which encodes three additional Y genes. These results demonstrated that Sxrb encodes a gene or genes that enhance the progression of spermatogenesis.

The study's findings are relevant but not directly translatable to human male infertility cases. In the era of assisted reproduction technologies, it is now possible to bypass several steps of normal human fertilization using immotile, non-viable, or immature sperm. At present, ROSI is still considered experimental due to concerns regarding the safety of injecting immature germ cells and other technical difficulties. The researchers hope that the success of ROSI in mouse studies may serve to support this approach as a viable option for overcoming infertility in men in the future.

As for the human Y chromosome, the researchers agree that it's not on its way to oblivion. Its genetic information is important for developing mature sperm and for its function in normal fertilization. The same is true for mice.

"Most of the mouse Y chromosome genes are necessary for normal fertilization," Ward said. "However, when it comes to assisted reproduction, our mouse study proves that the Y chromosome contribution can be brought to a bare minimum. It may be possible to eliminate the mouse Y chromosome altogether if appropriate replacements are made for those two genes."


The era of neutrino astronomy has begun

Nov. 21, 2013 — Astrophysicists using a telescope embedded in Antarctic ice have succeeded in a quest to detect and record the mysterious phenomena known as cosmic neutrinos -- nearly massless particles that stream to Earth at the speed of light from outside our solar system, striking the surface in a burst of energy that can be as powerful as a baseball pitcher's fastball. Next, they hope to build on the early success of the IceCube Neutrino Observatory to detect the source of these high-energy particles, said Physics Professor Gregory Sullivan, who led the University of Maryland's 12-person team of contributors to the IceCube Collaboration.

"The era of neutrino astronomy has begun," Sullivan said as the IceCube Collaboration announced the observation of 28 very high-energy particle events that constitute the first solid evidence for astrophysical neutrinos from cosmic sources.

By studying the neutrinos that IceCube detects, scientists can learn about the nature of astrophysical phenomena occurring millions, or even billions of light years from Earth, Sullivan said. "The sources of neutrinos, and the question of what could accelerate these particles, has been a mystery for more than 100 years. Now we have an instrument that can detect astrophysical neutrinos. It's working beautifully, and we expect it to run for another 20 years."

The collaboration's report on the first cosmic neutrino records from the IceCube Neutrino Observatory, collected from instruments embedded in one cubic kilometer of ice at the South Pole, was published Nov. 22 in the journal Science.

"This is the first indication of very high-energy neutrinos coming from outside our solar system," said University of Wisconsin-Madison Physics Professor Francis Halzen, principal investigator of IceCube. "It is gratifying to finally see what we have been looking for. This is the dawn of a new age of astronomy."

"Neutrinos are one of the basic building blocks of our universe," said UMD Physics Associate Professor Kara Hoffman, an IceCube team member. Billions of them pass through our bodies unnoticed every second. These extremely high-energy particles maintain their speed and direction unaffected by magnetic fields. The vast majority of neutrinos originate either in the sun or in Earth's own atmosphere. Far more rare are astrophysical neutrinos, which come from the outer reaches of our galaxy or beyond.

The origin and cause of astrophysical neutrinos are unknown, though gamma ray bursts, active galactic nuclei and black holes are potential sources. Better understanding of these neutrinos is critically important in particle physics, astrophysics and astronomy, and scientists have worked for more than 50 years to design and build a high-energy neutrino detector of this type.

IceCube was designed to accomplish two major scientific goals: measure the flux, or rate, of high-energy neutrinos and try to identify some of their sources. The neutrino observatory was built and is operated by an international collaboration of more than 250 physicists and engineers. UMD physicists have been key collaborators on IceCube since 2002, when its unique design was devised and construction began.

IceCube is made up of 5,160 digital optical modules suspended along 86 strings embedded in ice beneath the South Pole. The National Science Foundation-supported observatory detects neutrinos through the tiny flashes of blue light, called Cherenkov light, produced when neutrinos interact in the ice. Computers at the IceCube laboratory collect near-real-time data from the optical sensors and send information about interesting events north via satellite. The UMD team designed the data collection system and much of IceCube's analytic software. Construction took nearly a decade, and the completed detector began gathering data in May 2011.

"IceCube is a wonderful and unique astrophysical telescope -- it is deployed deep in the Antarctic ice but looks over the entire Universe, detecting neutrinos coming through the Earth from the northern skies, as well as from around the southern skies," said Vladimir Papitashvili of the National Science Foundation (NSF) Division of Polar Programs.

In April 2012 IceCube detected two high-energy events above 1 petaelectronvolt (PeV), nicknamed Bert and Ernie, the first astrophysical neutrinos definitively recorded by a terrestrial detector. After Bert and Ernie were discovered, the IceCube team searched their records from May 2010 to May 2012 of events that fell slightly below the energy level of their original search. They discovered 26 more high-energy events, all at levels of 30 teraelectronvolts (TeV) or higher, indicative of astrophysical neutrinos. Preliminary results of this analysis were presented May 15 at the IceCube Particle Astrophysics Symposium at UW-Madison. The analysis presented in Science reveals a highly statistically significant signal (more than 4 sigma), providing solid evidence that IceCube has successfully detected high-energy extraterrestrial neutrinos, said UMD's Sullivan.

Since astrophysical neutrinos move in straight lines unimpeded by outside forces, they can act as pointers to the place in the galaxy where they originated. The 28 events recorded so far are too few to point to any one location, Sullivan said. Over the coming years, the IceCube team will watch, "like waiting for a long exposure photograph," as more measurements fill in a picture that may reveal the point of origin of these intriguing phenomena.

New detection systems for astrophysical neutrinos are also in the works. Hoffman is leading the development of the Askaryan Radio Array, a neutrino telescope that uses radio frequency, which transmits best through very cold ice, to detect the particles. Plans are underway for 37 subsurface clusters of radio antennae

The IceCube Neutrino Observatory was built under a NSF Major Research Equipment and Facilities Construction grant, with assistance from partner funding agencies around the world. The NSF's Division of Polar Programs and Physics Division continue to support the project with a Maintenance and Operations grant, along with international support from participating institutes and their funding agencies.

UMD contributors to the IceCube collaboration include Sullivan and Hoffman; UMD faculty and staff members Erik Blaufuss, John Felde, Henrike Wissing, Alex Olivas, Donald La Dieu, and Torsten Schmidt; and graduate students Elim Cheung, Robert Hellauer, Ryan Maunu, and Michael Richman.